China Custom 65-9371 Rear Propeller Drive Shaft for Chevrolet Silverado 1500 2500 HD 3500

Product Description

 

PROPELLER SHAFT manufacturer & supplier – CHINAMFG is your best choice

Product Name:

Rear Propeller Driving Shafts for 2

for CHEVROLET Astro

for CHEVROLET Silverado

15763590

for CHEVROLET Astro

for CHEVROLET Silverado

150115

for CHEVROLET Silverado

15038493

for CHEVROLET Blazer

15769055

for CHEVROLET Silverado

for CHEVROLET Blazer

15711949

for CHEVROLET Silverado

92194140

for CHEVROLET Camaro

2571697

for CHEVROLET Silverado

92236999

for CHEVROLET Camaro

15794277

for CHEVROLET Silverado

92244891

for CHEVROLET Camaro

5215718AE

for CHEVROLET Silverado

20781756

for CHEVROLET Captiva

5215718AC

for CHEVROLET Silverado

96624771

for CHEVROLET Captiva

15271513

for CHEVROLET Silverado

15126587

for CHEVROLET Colorado

25857882

for CHEVROLET Silverado

15173138

for CHEVROLET Colorado

2657169

for CHEVROLET Silverado 15

for CHEVROLET Colorado

53

for CHEVROLET Equinox

15094629

for CHEVROLET Silverado 15

for CHEVROLET Equinox

10382040

for CHEVROLET Silverado 15

for CHEVROLET Equinox

5215712AE

for CHEVROLET Silverado 35

for CHEVROLET Equinox

5215712AG

for CHEVROLET Silverado 35

for CHEVROLET Equinox

53

for CHEVROLET Express

15114531

for CHEVROLET Silverado 35

for CHEVROLET Express

493

for CHEVROLET K15

for CHEVROLET K25AD

for CHEVROLET Silverado 35

for CHEVROLET K25

for CHEVROLET Silverado 35

for CHEVROLET Silverado 35

for CHEVROLET Silverado

15571431

for CHEVROLET Silverado 35

for CHEVROLET Silverado

15271519

for CHEVROLET Silverado 35

for CHEVROLET Silverado

25775919

for CHEVROLET Silverado 35

for CHEVROLET Silverado

25857888

for CHEVROLET Silverado 35

for CHEVROLET Silverado

25857887

for CHEVROLET Silverado 35

for CHEVROLET Silverado

53

for CHEVROLET Silverado

15016993

for CHEVROLET Silverado 35

for CHEVROLET Silverado

25995544

for CHEVROLET Traverse

15749292

for CHEVROLET Silverado

25995545

for CHEVROLET Traverse

15746

for CHEVROLETE Silverado

15189835

for CHEVROLET Silverado

 

 

10382035

for GM Silverado 15

for GMC K25

for GMC Yukon XL Denali

7L6521102M

for GMC Sierra 25

for GMC Sierra 25AB

for GMC Yukon

7L6521102P

for GMC Sierra 35AC

for GMC Yukon

for GMC Sierra 35AD

for GMC Yukon

15571424

for GMC Sierra 35

for GMC Sierra 35

for GMC Yukon

7L6521101E

for GMC Yukon

for GMC Yukon

7L6521102Q

for GMC Yukon

84257144

for GMC Yukon

7L57101D

for GMC Yukon

23267375

for GMC Yukon

7L57101H

for GMC Yukon

23469165

for GMC Yukon

7L6521102J

for GMC Yukon

23126607

for GMC Yukon

84546234

for GMC Yukon

15036952

for GMC Yukon

15247182

for GMC Yukon

2657199

for GMC Yukon

15957126

for GMC Yukon

XL2Z4A376BA

for GMC Yukon XL

22845693

for GMC Yukon

XL2Z4A376BB

for GMC Yukon XL

22847354

for GMC Yukon

5215712AC

for GMC Yukon XL

for GMC Yukon XL Denali

23126608

for GMC Yukon XL

7L6521101G

for GMC Yukon XL Denali

23318717

for GMC Yukon XL

7L6521101N

for GMC Yukon XL Denali

84257145

for GMC Yukon XL

7L6521101C

for GMC Yukon XL Denali

84546234

for GMC Yukon XL Denali

CARDONE

FITMENT

DORMAN

FITMENT

65-9519

for CHEVROLET SILVERADO 1500

938-186

for CHEVROLET SILVERADO 1500

65-9520

for CHEVROLET SILVERADO 2500

938-222

for CHEVROLET SILVERADO 2500

65-9339

for CHEVROLET BLAZER

938-192

for CHEVROLET BLAZER

65-9329 / 65-9332

for Chevrolet Blazer S10

938-080

for Chevrolet Blazer S10

65-9359

for Chevrolet Blazer S10

938-083

for Chevrolet Blazer S10

65-1001A

for Chevrolet Equinox

936-297

for CHEVROLET 1500

65-9360

for CHEVROLET K1500

936-294

for CHEVROLET AVALANCHE 1500

65-9362

for CHEVROLET K1500

938-098

for CHEVROLET Blazer K1500 K2500 Yukon

65-9366

for CHEVROLET K2500 K3500

946-030

for CHEVROLET Camaro

65-9371

for Chevrolet Silverado1500

936-291

for CHEVROLET Colorado Canyon

65-9395

for CHEVROLET Avalanche 1500

936-120

for Chevrolet Equinox

65-9333

for CHEVROLET BLAZER

946-035

for CHEVROLET EQUINOX

65-9346

for CHEVROLET BLAZER

946-072

for CHEVROLET EXPRESS 3500 4500

65-9369

for Chevrolet BLAZER

938-187

for Chevrolet K10/K20

65-9348

for CHEVROLET Blazer K1500 K2500 Yukon

936-064

for CHEVROLET K1500 PICKUP

65-9334

for CHEVROLET Blazer, K10 Pickup, K20 Pickup

938-220

for CHEVROLET Silverado 1500

65-9337

for Chevrolet K10/K20

938-221

for CHEVROLET SILVERADO 1500

65-9338

for CHEVROLET K10/K20

938-571

for CHEVROLET SILVERADO 2500

65-9344

for CHEVROLET K2500

946-093

for CHEVROLET Silverado 2500 HD

65-9307

for CHEVROLET SILVERADO 1500

946-963

for Chevy Blazer

65-9527

for CHEVROLET SILVERADO 1500 SIERRA 2500

936-113

for Chevy Colorado

65-9306

for CHEVROLET SILVERADO 2500

936-057

for Chevy Express

65-9528

for CHEVROLET SILVERADO 2500

938-219

for Chevy S-10 CHINAMFG Sonoma

65-9827

for CHEVROLET SILVERADO 2500/3500

946-047

for Chevy Silverado 1500

65-9518

for Chevy

938-189

for Chevy Astro Safari

65-9353

for Chevy CK Pickup

936-059

for Chevy Silverado 1500

65-9516

for Chevy Colorado

 

 

65-9336

for Chevy K30

 

 

65-9351

for Chevy K30

 

 

65-9358

for Chevy S-10 CHINAMFG Sonoma

 

 

65-9529

for Chevy Silverado 1500

 

 

65-9146

for Chevy Astro Safari

 

 

65-9347

for GMC K3500

 

 

65-9355

for GMC SAFARI, CHEVY ASTRO VAN

 

 

If you need more information about CHEVROLET Propeller Shaft, please message or email to us ASAP.

—-  OUR ADVANTAGE —-
 +700 models for AMERICA & EUROPE marketMOQ: 3PCS / for 1 item, MIN order amount: USD5000
Quality assurance: One Year WarrantyStable delivery time: 45 days
Free Sample DevelopedApply O/A 30-90 days for regular customer

 

Becides CHEVROLET Propeller Shaft,we have Over 800 items applicable for following vehicles:

 

 

 

 

 

 

 

 

—-   F A Q   —-
Q1:  If we don’t find what we need on your website, what should we do?
You can send us the OE number or of the product you need, we will check if we have them.
We also develop new models according to customer’s need;
you can contact us for more detail.
Q2:  Can I get a price discount if I order large quantities? Yes, it depends on your purchasing quantity, more quantity more discount.
Q3:  What about the delivery time? If we have stock, we can send you the goods within 3 working days,
if we don’t have stock, generally it needs 10 to 40 days.

Q4:  What’s our MOQ? Sample order for quality testing 1 piece , normal order 50 pieces for 1 order with mixed models .
Q5:  What’s your payment terms and condition ? We can accept T/T , LC, Trade Assurance, Western Union, Paypal, Moneygram ect.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Condition: New
Color: Black
Certification: ISO, Ts16949
Type: Drive Shaft
Application Brand: Chevrolet
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What Factors Should Be Considered When Selecting the Right Rear Drive Shaft for a Vehicle?

When selecting the right rear drive shaft for a vehicle, several factors need to be considered to ensure optimal performance, durability, and safety. Here’s a detailed explanation of the key factors that should be taken into account:

1. Vehicle Specifications:

The specific characteristics of the vehicle play a significant role in determining the appropriate rear drive shaft. Factors such as the vehicle’s weight, horsepower, torque output, wheelbase, suspension design, and intended use (e.g., off-roading, towing, performance driving) need to be considered. These specifications help determine the required torque capacity, length, diameter, and material strength of the drive shaft to handle the vehicle’s demands effectively.

2. Drivetrain Configuration:

The drivetrain configuration of the vehicle influences the selection of the rear drive shaft. Vehicles with rear-wheel drive (RWD), four-wheel drive (4WD), or all-wheel drive (AWD) systems have different drivetrain layouts and torque distribution requirements. The drive shaft must be compatible with the vehicle’s drivetrain configuration, including the type of differential, transfer case, and front-wheel drive components, if applicable.

3. Torque and Power Requirements:

The torque and power output of the vehicle’s engine or transmission impact the selection of the rear drive shaft. Higher torque and power levels necessitate a stronger and more robust drive shaft to handle the increased load. It is important to consider the maximum torque and power values of the vehicle and select a drive shaft that can safely and reliably transmit the power without exceeding its rated capacity.

4. Material Selection:

The choice of materials for the rear drive shaft is crucial in ensuring its strength, durability, and weight. Common materials used for drive shafts include steel and aluminum. Steel drive shafts offer high strength and are typically used in heavy-duty applications, while aluminum drive shafts are lighter and can provide weight savings, making them suitable for performance-oriented vehicles. The material selection should also consider factors such as corrosion resistance, cost, and manufacturing feasibility.

5. Length and Diameter:

The length and diameter of the rear drive shaft are critical considerations to prevent issues such as vibration, bending, or excessive deflection. The length of the drive shaft depends on the vehicle’s wheelbase and the distance between the transmission or transfer case and the rear differential. The diameter of the drive shaft is determined by the torque and power requirements, as well as the material properties. Proper sizing ensures the drive shaft can handle the forces and maintain optimal power transmission without compromising safety or performance.

6. Suspension and Drivetrain Movements:

The suspension system and drivetrain movements of the vehicle need to be taken into account when selecting a rear drive shaft. The drive shaft must accommodate the range of motion and articulation of the suspension, as well as the angular movements and changes in alignment between the transmission, differential, and rear wheels. Flexible joints such as universal joints (u-joints) or constant velocity (CV) joints are typically used to allow for these movements while maintaining torque transmission.

7. Environmental Factors:

The environmental conditions in which the vehicle will operate should be considered when selecting a rear drive shaft. Factors such as temperature extremes, exposure to moisture, off-road terrain, and corrosive substances can impact the choice of materials, protective coatings, and maintenance requirements of the drive shaft. It is essential to select a drive shaft that can withstand the environmental conditions and maintain its performance and longevity.

8. Manufacturer Quality and Compatibility:

When choosing a rear drive shaft, it is important to consider the reputation and quality of the manufacturer. Selecting a drive shaft from a reputable and experienced manufacturer ensures that the product meets industry standards, undergoes thorough quality control, and is compatible with the vehicle’s specifications and requirements. It is advisable to consult with automotive professionals or refer to manufacturer guidelines to ensure proper selection and compatibility.

In summary, selecting the right rear drive shaft for a vehicle involves considering factors such as vehicle specifications, drivetrain configuration, torque and power requirements, material selection, length and diameter, suspension and drivetrain movements, environmental factors, and manufacturer quality. Taking these factors into account helps ensure that the chosen rear drive shaft is suitable for the vehicle’s needs and provides reliable and efficient power transmission.

pto shaft

What Safety Precautions Should Be Followed When Working with Rear Drive Shafts?

Working with rear drive shafts requires adherence to specific safety precautions to minimize the risk of accidents, injuries, and damage to the vehicle or surrounding components. Here are detailed safety precautions that should be followed when working with rear drive shafts:

1. Wear Protective Gear:

Always wear appropriate personal protective equipment (PPE) when working with rear drive shafts. This includes safety glasses or goggles to protect your eyes from debris, gloves to safeguard your hands from sharp edges or moving parts, and sturdy footwear to provide foot protection in case of accidents or dropped tools.

2. Ensure Vehicle Stability:

Prioritize vehicle stability when working with rear drive shafts. Park the vehicle on a level surface and engage the parking brake. If necessary, use wheel chocks to prevent the vehicle from rolling. Additionally, if you are raising the vehicle using a jack or lift, ensure that it is securely supported with jack stands or appropriate lift points to prevent accidental movement or collapse.

3. Disconnect the Battery:

Before beginning any work on the rear drive shaft, disconnect the vehicle’s battery. This precaution helps prevent accidental engagement of the starter motor or other electrical components, reducing the risk of injury or damage during the maintenance or replacement process.

4. Release Tension on the Drivetrain:

Release tension on the drivetrain components before removing the rear drive shaft. If applicable, release tension on the parking brake, shift the transmission into neutral, and engage the wheel chocks. This step helps prevent unexpected movement of the vehicle or drivetrain components while working on the drive shaft.

5. Secure the Drive Shaft:

Prior to removing the rear drive shaft, ensure it is securely supported and immobilized. Use a drive shaft support fixture or a transmission jack to hold the drive shaft in place. This prevents the drive shaft from falling or causing injury when it is disconnected from the transmission or differential.

6. Mark Alignment Points:

Before disconnecting the rear drive shaft, mark alignment points on the drive shaft and the surrounding components. This will help ensure proper reinstallation and alignment during assembly. Marking the orientation of the drive shaft also aids in identifying any imbalance or misalignment issues that may arise during reinstallation.

7. Use Proper Tools and Techniques:

Always use the appropriate tools and techniques when working with rear drive shafts. Use socket wrenches, torque wrenches, and other specialized tools designed for drive shaft removal and installation. Avoid using improper tools or excessive force, as this can lead to damage or personal injury. Follow manufacturer guidelines and service manuals for specific procedures and torque specifications.

8. Handle with Care:

Handle the rear drive shaft with care to avoid unnecessary damage or injury. Avoid dropping or striking the drive shaft against hard surfaces, as this can cause dents, bends, or other structural damage. Additionally, be cautious of sharp edges or splines on the drive shaft that can cause cuts or abrasions. Always handle the drive shaft by gripping secure areas and wearing appropriate gloves for added protection.

9. Inspect for Damage and Wear:

Before reinstalling or replacing the rear drive shaft, thoroughly inspect it for any signs of damage or wear. Check for cracks, dents, corrosion, or loose components. Also, inspect the U-joints or CV joints for excessive play, rust, or damaged seals. If any issues are detected, it is advisable to replace the damaged parts or the entire drive shaft to ensure safe and reliable operation.

10. Follow Proper Reinstallation Procedures:

When reinstalling the rear drive shaft, follow proper procedures to ensure correct alignment and engagement with the transmission output shaft and differential input flange. Use the alignment marks made during disassembly as a guide. Tighten all fasteners to the recommended torque specifications, and ensure that all retaining clips or bolts are properly secured.

11. Test for Proper Functioning:

After completing the rear drive shaft work, conduct a thorough test to ensure proper functioning. Check for any abnormal vibrations, noises, or leaks during vehicle operation. If any issues are observed, reinspect the drive shaft installation and address the problem promptly.

12. Consult Professional Assistance if Needed:

If you are uncertain about any aspect of working with rear drive shafts or encounter difficulties during the process, it is advisable to seek professional assistance from a qualified technician or automotive service center. Theycan provide the necessary expertise and ensure the work is carried out safely and correctly.

By following these safety precautions when working with rear drive shafts, you can help protect yourself, prevent damage to the vehicle, and maintain a safe working environment. Remember to always prioritize safety and exercise caution throughout the entire process.

pto shaft

How Do Rear Drive Shafts Impact the Performance and Drivability of Vehicles?

Rear drive shafts have a significant impact on the performance and drivability of vehicles. As a crucial component of the drivetrain system, the rear drive shaft affects various aspects of a vehicle’s operation, including power delivery, handling, stability, and overall driving experience. Here’s a detailed explanation of how rear drive shafts impact the performance and drivability of vehicles:

1. Power Transmission:

Rear drive shafts play a vital role in transmitting power from the engine or transmission to the wheels. As the engine generates torque, the rear drive shaft transfers this rotational force to the rear wheels, enabling propulsion and vehicle movement. The efficiency and effectiveness of power transmission through the rear drive shaft directly impact a vehicle’s acceleration, towing capacity, and overall performance.

2. Traction and Stability:

The distribution of power between the rear wheels, controlled by the rear drive shaft and the rear differential, significantly affects a vehicle’s traction and stability. By transmitting torque to the rear differential, the rear drive shaft allows the differential to distribute power to each rear wheel based on traction conditions.

Proper power distribution between the rear wheels ensures balanced traction, reducing the likelihood of wheel slippage or loss of control. This enhances the vehicle’s stability, especially during acceleration, cornering, or driving on uneven or slippery surfaces.

3. Handling and Cornering:

Rear drive shafts influence a vehicle’s handling and cornering capabilities. In rear-wheel drive (RWD) vehicles, the rear drive shaft connects the transmission or transfer case to the rear differential, resulting in a weight distribution biased towards the rear of the vehicle.

This weight distribution, combined with the rear drive shaft’s torque transmission to the rear wheels, contributes to better traction and stability during cornering. RWD vehicles typically exhibit a more balanced and predictable handling characteristic, allowing drivers to maintain better control and confidence while navigating turns.

4. Suspension Compatibility:

Rear drive shafts also need to be compatible with a vehicle’s suspension system. The suspension system allows the wheels to move independently, absorbing bumps, road irregularities, and other disturbances for a smoother ride.

The rear drive shaft must accommodate the vertical movement of the suspension without affecting power transmission. It achieves this by incorporating flexible joints or splines that allow the drive shaft to expand or contract in length as the suspension moves. This compatibility ensures that the rear drive shaft does not hinder the suspension’s ability to absorb shocks and maintain tire contact with the road surface.

5. Drivetrain Efficiency:

The efficiency of a vehicle’s drivetrain system is influenced by the performance of the rear drive shaft. A well-designed and properly maintained rear drive shaft minimizes power losses and mechanical friction, allowing more power to reach the wheels and optimizing overall drivetrain efficiency.

Efficient power transmission through the rear drive shaft contributes to improved fuel efficiency, reduced energy waste, and enhanced performance. Regular maintenance, such as lubrication and alignment, ensures that the rear drive shaft operates smoothly and maximizes its contribution to drivetrain efficiency.

6. Four-Wheel Drive Capability:

In vehicles equipped with four-wheel drive (4WD) or all-wheel drive (AWD) systems, rear drive shafts play a crucial role in enabling four-wheel drive capability. The rear drive shaft transfers torque to the transfer case, which distributes power to both the front and rear differentials.

By facilitating power distribution to all four wheels, rear drive shafts enhance the vehicle’s off-road performance, traction, and stability. Four-wheel drive capability allows the vehicle to tackle challenging terrain, slippery conditions, or uneven surfaces with improved control and maneuverability.

In summary, rear drive shafts have a significant impact on the performance and drivability of vehicles. They affect power transmission, traction, stability, handling, suspension compatibility, drivetrain efficiency, and enable four-wheel drive capability. By understanding and optimizing the design, maintenance, and performance of rear drive shafts, manufacturers and drivers can enhance a vehicle’s overall performance, efficiency, and driving experience.

China Custom 65-9371 Rear Propeller Drive Shaft for Chevrolet Silverado 1500 2500 HD 3500  China Custom 65-9371 Rear Propeller Drive Shaft for Chevrolet Silverado 1500 2500 HD 3500
editor by CX 2024-03-26