China Hot selling 37100-3D250 Rear Driveshaft Assembly for CZPT Tacoma 1998-2004 2.7L Rwd a. T Drive Prop Cardan Shaft

Product Description


PROPELLER SHAFT manufacturer & supplier – CHINAMFG is your best choice

 

Product Name

Rear Drive Propeller Shaft Assembly For CHINAMFG TACOMA 98-04

Part Number

371AD

for CHINAMFG

37140‐6571

for CHINAMFG Land Cruiser

37302‐2

for CHINAMFG ‐

37140‐60590

for CHINAMFG Land Cruiser

for CHINAMFG ‐

37140‐6A610

for CHINAMFG Land Cruiser

37120‐0K030

for CHINAMFG ‐

37110‐6A620

for CHINAMFG Land Cruiser

37120‐30420

for CHINAMFG ‐

37140‐6AA

for CHINAMFG 4Runner

5215714AE

for CHINAMFG Land Crusier

530 0571 8

for CHINAMFG 4Runner

52123112AA

for CHINAMFG Land Crusier

25843685

for CHINAMFG 4Runner

37110‐6A310

for CHINAMFG Land Crusier

for CHINAMFG 4Runner

26571316

for CHINAMFG Pickup

for CHINAMFG 4Runner

151 0571 2

for CHINAMFG Pickup

for CHINAMFG 4Runner

37140‐35040

for CHINAMFG Pickup

for CHINAMFG 4Runner

37140‐35013

for CHINAMFG Pickup

37110‐3D060

for CHINAMFG 4Runner

37140‐35012

for CHINAMFG Pickup

37110‐3D3

for CHINAMFG CHINAMFG

371AC

for CHINAMFG Hilux

37110‐35880

for CHINAMFG Tacoma

521 0571 8AB

for CHINAMFG Hilux

37110‐3D220

for CHINAMFG Tacoma

5257103

for CHINAMFG Hilux

371

for CHINAMFG Hilux

371

for CHINAMFG Hilux

371AB

for CHINAMFG Hilux KUN15

37140‐60330

for CHINAMFG Land Cruiser

371AF

for CHINAMFG HJ60

37140‐6571

for CHINAMFG Land Cruiser

37110‐60330

for CHINAMFG HJ60

37110‐65710

for CHINAMFG Land Cruiser

371002A190

for CHINAMFG JZX100

37110‐65710

for CHINAMFG Land Cruiser

DORMAN

FITMENT

CARDONE

FITMENT

936-723

for CHINAMFG 4Runner

65-5018

for CHINAMFG 4Runner

936-775

for CHINAMFG 4Runner

65-9919

for CHINAMFG 4Runner

936-796

for CHINAMFG 4Runner

65-5002

for CHINAMFG 4Runner

938-306

for CHINAMFG 4Runner

65-5571

for CHINAMFG 4Runner

938-704

for CHINAMFG 4Runner

65-5016

for CHINAMFG 4Runner SR5

938-707

for CHINAMFG 4Runner

65-5006

for CHINAMFG HIGHLANDER

938-791

for CHINAMFG 4Runner SR5

65-9268

for CHINAMFG HILUX LN65 LN106 YN60 YN65 YN67

946-164

for CHINAMFG HIGHLANDER

65-9851

for CHINAMFG Land Cruiser

938-701

for CHINAMFG Land Cruiser

65-9375

for CHINAMFG Pickup

938-174

for CHINAMFG Pickup

65-9376

for CHINAMFG Pickup

938-706

for CHINAMFG Pickup

65-9842

for CHINAMFG Previa

936-722

for CHINAMFG RAV4

65-5000

for CHINAMFG RAV4

934-403

for CHINAMFG RAV4

65-5001

for CHINAMFG RAV4

936-721

for CHINAMFG Sienna

65-5007

for CHINAMFG Sienna

936-745

for CHINAMFG SIENNA

65-5030

for CHINAMFG SIENNA

936-700

for CHINAMFG Tacoma

65-5571

for CHINAMFG Tacoma

936-703

for CHINAMFG Tacoma

65-5011

for CHINAMFG Tacoma

936-704

for CHINAMFG Tacoma

65-5012

for CHINAMFG Tacoma

936-706

for CHINAMFG Tacoma

65-5013

for CHINAMFG Tacoma

936-708

for CHINAMFG Tacoma

65-5015

for CHINAMFG Tacoma

936-711

for CHINAMFG Tacoma

65-5019

for CHINAMFG Tacoma

936-724

for CHINAMFG Tacoma

65-5571

for CHINAMFG Tacoma

936-726

for CHINAMFG Tacoma

65-5571

for CHINAMFG Tacoma

936-728

for CHINAMFG Tacoma

65-5571

for CHINAMFG Tundra

936-738

for CHINAMFG Tacoma

65-5026

for CHINAMFG Tundra

936-717

for CHINAMFG Tundra

 

 

936-718

for CHINAMFG Tundra

 

 

936-719

for CHINAMFG Tundra

 

 

If you need more information about TOYOTA Propeller Shaft, please message or email to us ASAP.

 

—-  OUR ADVANTAGE —-
 +700 models for AMERICA & EUROPE marketMOQ: 3PCS / for 1 item, MIN order amount: USD5000
Quality assurance: One Year WarrantyStable delivery time: 45 days
Free Sample DevelopedApply O/A 30-90 days for regular customer

 

Becides CHINAMFG Propeller Shaft,we have Over 700 items applicable for following vehicles:

 

 

 

 

 

 

 

 

—-   F A Q   —-
Q1:  If we don’t find what we need on your website, what should we do?
You can send us the OE number or of the product you need, we will check if we have them.
We also develop new models according to customer’s need;
you can contact us for more detail.
Q2:  Can I get a price discount if I order large quantities? Yes, it depends on your purchasing quantity, more quantity more discount.
Q3:  What about the delivery time? If we have stock, we can send you the goods within 3 working days,
if we don’t have stock, generally it needs 10 to 40 days.

Q4:  What’s our MOQ? Sample order for quality testing 1 piece , normal order 50 pieces for 1 order with mixed models .
Q5:  What’s your payment terms and condition ? We can accept T/T , LC, Trade Assurance, Western Union, Paypal, Moneygram ect.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Condition: New
Color: Black
Certification: ISO, Ts16949
Type: Drive Shaft
Application Brand: Toyota
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What Factors Should Be Considered When Selecting the Right Rear Drive Shaft for a Vehicle?

When selecting the right rear drive shaft for a vehicle, several factors need to be considered to ensure optimal performance, durability, and safety. Here’s a detailed explanation of the key factors that should be taken into account:

1. Vehicle Specifications:

The specific characteristics of the vehicle play a significant role in determining the appropriate rear drive shaft. Factors such as the vehicle’s weight, horsepower, torque output, wheelbase, suspension design, and intended use (e.g., off-roading, towing, performance driving) need to be considered. These specifications help determine the required torque capacity, length, diameter, and material strength of the drive shaft to handle the vehicle’s demands effectively.

2. Drivetrain Configuration:

The drivetrain configuration of the vehicle influences the selection of the rear drive shaft. Vehicles with rear-wheel drive (RWD), four-wheel drive (4WD), or all-wheel drive (AWD) systems have different drivetrain layouts and torque distribution requirements. The drive shaft must be compatible with the vehicle’s drivetrain configuration, including the type of differential, transfer case, and front-wheel drive components, if applicable.

3. Torque and Power Requirements:

The torque and power output of the vehicle’s engine or transmission impact the selection of the rear drive shaft. Higher torque and power levels necessitate a stronger and more robust drive shaft to handle the increased load. It is important to consider the maximum torque and power values of the vehicle and select a drive shaft that can safely and reliably transmit the power without exceeding its rated capacity.

4. Material Selection:

The choice of materials for the rear drive shaft is crucial in ensuring its strength, durability, and weight. Common materials used for drive shafts include steel and aluminum. Steel drive shafts offer high strength and are typically used in heavy-duty applications, while aluminum drive shafts are lighter and can provide weight savings, making them suitable for performance-oriented vehicles. The material selection should also consider factors such as corrosion resistance, cost, and manufacturing feasibility.

5. Length and Diameter:

The length and diameter of the rear drive shaft are critical considerations to prevent issues such as vibration, bending, or excessive deflection. The length of the drive shaft depends on the vehicle’s wheelbase and the distance between the transmission or transfer case and the rear differential. The diameter of the drive shaft is determined by the torque and power requirements, as well as the material properties. Proper sizing ensures the drive shaft can handle the forces and maintain optimal power transmission without compromising safety or performance.

6. Suspension and Drivetrain Movements:

The suspension system and drivetrain movements of the vehicle need to be taken into account when selecting a rear drive shaft. The drive shaft must accommodate the range of motion and articulation of the suspension, as well as the angular movements and changes in alignment between the transmission, differential, and rear wheels. Flexible joints such as universal joints (u-joints) or constant velocity (CV) joints are typically used to allow for these movements while maintaining torque transmission.

7. Environmental Factors:

The environmental conditions in which the vehicle will operate should be considered when selecting a rear drive shaft. Factors such as temperature extremes, exposure to moisture, off-road terrain, and corrosive substances can impact the choice of materials, protective coatings, and maintenance requirements of the drive shaft. It is essential to select a drive shaft that can withstand the environmental conditions and maintain its performance and longevity.

8. Manufacturer Quality and Compatibility:

When choosing a rear drive shaft, it is important to consider the reputation and quality of the manufacturer. Selecting a drive shaft from a reputable and experienced manufacturer ensures that the product meets industry standards, undergoes thorough quality control, and is compatible with the vehicle’s specifications and requirements. It is advisable to consult with automotive professionals or refer to manufacturer guidelines to ensure proper selection and compatibility.

In summary, selecting the right rear drive shaft for a vehicle involves considering factors such as vehicle specifications, drivetrain configuration, torque and power requirements, material selection, length and diameter, suspension and drivetrain movements, environmental factors, and manufacturer quality. Taking these factors into account helps ensure that the chosen rear drive shaft is suitable for the vehicle’s needs and provides reliable and efficient power transmission.

pto shaft

What Safety Precautions Should Be Followed When Working with Rear Drive Shafts?

Working with rear drive shafts requires adherence to specific safety precautions to minimize the risk of accidents, injuries, and damage to the vehicle or surrounding components. Here are detailed safety precautions that should be followed when working with rear drive shafts:

1. Wear Protective Gear:

Always wear appropriate personal protective equipment (PPE) when working with rear drive shafts. This includes safety glasses or goggles to protect your eyes from debris, gloves to safeguard your hands from sharp edges or moving parts, and sturdy footwear to provide foot protection in case of accidents or dropped tools.

2. Ensure Vehicle Stability:

Prioritize vehicle stability when working with rear drive shafts. Park the vehicle on a level surface and engage the parking brake. If necessary, use wheel chocks to prevent the vehicle from rolling. Additionally, if you are raising the vehicle using a jack or lift, ensure that it is securely supported with jack stands or appropriate lift points to prevent accidental movement or collapse.

3. Disconnect the Battery:

Before beginning any work on the rear drive shaft, disconnect the vehicle’s battery. This precaution helps prevent accidental engagement of the starter motor or other electrical components, reducing the risk of injury or damage during the maintenance or replacement process.

4. Release Tension on the Drivetrain:

Release tension on the drivetrain components before removing the rear drive shaft. If applicable, release tension on the parking brake, shift the transmission into neutral, and engage the wheel chocks. This step helps prevent unexpected movement of the vehicle or drivetrain components while working on the drive shaft.

5. Secure the Drive Shaft:

Prior to removing the rear drive shaft, ensure it is securely supported and immobilized. Use a drive shaft support fixture or a transmission jack to hold the drive shaft in place. This prevents the drive shaft from falling or causing injury when it is disconnected from the transmission or differential.

6. Mark Alignment Points:

Before disconnecting the rear drive shaft, mark alignment points on the drive shaft and the surrounding components. This will help ensure proper reinstallation and alignment during assembly. Marking the orientation of the drive shaft also aids in identifying any imbalance or misalignment issues that may arise during reinstallation.

7. Use Proper Tools and Techniques:

Always use the appropriate tools and techniques when working with rear drive shafts. Use socket wrenches, torque wrenches, and other specialized tools designed for drive shaft removal and installation. Avoid using improper tools or excessive force, as this can lead to damage or personal injury. Follow manufacturer guidelines and service manuals for specific procedures and torque specifications.

8. Handle with Care:

Handle the rear drive shaft with care to avoid unnecessary damage or injury. Avoid dropping or striking the drive shaft against hard surfaces, as this can cause dents, bends, or other structural damage. Additionally, be cautious of sharp edges or splines on the drive shaft that can cause cuts or abrasions. Always handle the drive shaft by gripping secure areas and wearing appropriate gloves for added protection.

9. Inspect for Damage and Wear:

Before reinstalling or replacing the rear drive shaft, thoroughly inspect it for any signs of damage or wear. Check for cracks, dents, corrosion, or loose components. Also, inspect the U-joints or CV joints for excessive play, rust, or damaged seals. If any issues are detected, it is advisable to replace the damaged parts or the entire drive shaft to ensure safe and reliable operation.

10. Follow Proper Reinstallation Procedures:

When reinstalling the rear drive shaft, follow proper procedures to ensure correct alignment and engagement with the transmission output shaft and differential input flange. Use the alignment marks made during disassembly as a guide. Tighten all fasteners to the recommended torque specifications, and ensure that all retaining clips or bolts are properly secured.

11. Test for Proper Functioning:

After completing the rear drive shaft work, conduct a thorough test to ensure proper functioning. Check for any abnormal vibrations, noises, or leaks during vehicle operation. If any issues are observed, reinspect the drive shaft installation and address the problem promptly.

12. Consult Professional Assistance if Needed:

If you are uncertain about any aspect of working with rear drive shafts or encounter difficulties during the process, it is advisable to seek professional assistance from a qualified technician or automotive service center. Theycan provide the necessary expertise and ensure the work is carried out safely and correctly.

By following these safety precautions when working with rear drive shafts, you can help protect yourself, prevent damage to the vehicle, and maintain a safe working environment. Remember to always prioritize safety and exercise caution throughout the entire process.

pto shaft

How Do Rear Drive Shafts Handle Variations in Torque, Speed, and Alignment?

Rear drive shafts are designed to handle variations in torque, speed, and alignment within a vehicle’s drivetrain. They play a crucial role in transmitting power from the engine or transmission to the rear wheels while accommodating the dynamic forces and movements encountered during operation. Here’s a detailed explanation of how rear drive shafts handle variations in torque, speed, and alignment:

Variations in Torque:

Rear drive shafts are engineered to withstand and transmit varying levels of torque generated by the engine. Torque variations occur during acceleration, deceleration, and changes in load. To handle these variations, rear drive shafts are typically constructed with high-strength materials such as steel or aluminum to provide the necessary strength and rigidity. The diameter, wall thickness, and design of the drive shaft are carefully calculated to ensure torque capacity and reliability. Additionally, universal joints (u-joints) or constant velocity (CV) joints are incorporated into the drive shaft assembly to allow for rotational movement and accommodate changes in angles and torque loads.

Variations in Speed:

Rear drive shafts are designed to adapt to variations in rotational speed between the engine or transmission and the rear wheels. As the vehicle accelerates or decelerates, the rotational speed of the drive shaft changes. To handle these variations, the length and design of the rear drive shaft are carefully calculated to minimize vibrations and maintain smooth power delivery. The drive shaft may incorporate features such as balancing weights or dampers to reduce or eliminate vibrations caused by speed fluctuations. Additionally, the use of u-joints or CV joints allows for angular movement and accommodates speed differentials between the two ends of the drive shaft.

Variations in Alignment:

Rear drive shafts must also accommodate variations in alignment caused by suspension movement, chassis flex, and drivetrain articulation. As the suspension compresses or extends, the drivetrain components can shift in relation to each other, causing changes in the alignment of the rear drive shaft. To handle these variations, rear drive shafts incorporate flexible components such as u-joints or CV joints. These joints allow for angular movement and articulation, accommodating changes in the relative positions of the transmission, differential, and rear wheels. The use of flexible couplings or slip yokes at each end of the drive shaft also helps to compensate for alignment changes and prevent binding or excessive stress on the drive shaft components.

Vibration and Harmonic Damping:

Vibrations and harmonic forces can be generated within the drivetrain, especially at higher speeds. Rear drive shafts are designed to mitigate these vibrations and dampen harmonic forces to ensure a smooth and balanced ride. Various techniques are employed to achieve this, including the use of properly balanced drive shafts, vibration-absorbing materials, and damping devices such as rubber or elastomer dampers. These measures help reduce the transmission of vibrations and harmonics throughout the drivetrain, enhancing the overall comfort, stability, and longevity of the rear drive shaft.

In summary, rear drive shafts are engineered to handle variations in torque, speed, and alignment within a vehicle’s drivetrain. They are constructed with high-strength materials, incorporate flexible joints, and employ techniques to dampen vibrations and harmonics. By accommodating these variations, rear drive shafts ensure efficient power transmission, smooth operation, and reliable performance in various driving conditions.

China Hot selling 37100-3D250 Rear Driveshaft Assembly for CZPT Tacoma 1998-2004 2.7L Rwd a. T Drive Prop Cardan Shaft  China Hot selling 37100-3D250 Rear Driveshaft Assembly for CZPT Tacoma 1998-2004 2.7L Rwd a. T Drive Prop Cardan Shaft
editor by CX 2024-03-14