China supplier Bl8z4r602A Rear Drive Propeller Shaft for CZPT Escape OEM 936-892 2008-2012 Driveshaft

Product Description

 

PROPELLER SHAFT manufacturer & supplier – CHINAMFG is your best choice

Product Name

Rear Drive Shaft Assembly For CHINAMFG escape

Part Number

936-892, BL8Z4R602A

Vehicle Fitment

For CHINAMFG escape 2-2016

65-9166

for CHINAMFG F-150

65-9112

for CHINAMFG F-250 Super Duty

65-2012

for CHINAMFG F150

65-9667

for CHINAMFG F-350

65-2-2016

OE NO.

FITMENT

OE NO.

FITMENT

52123110AC

for CHINAMFG Escape

5L3Z‐4R602‐W

for CHINAMFG F-150

BL8Z4R602A

for CHINAMFG Escape

5L34‐4K145‐WD

for CHINAMFG F-150

2L8Z4R602BA

for CHINAMFG Escape

5L3Z‐4R602‐WB

for CHINAMFG F-150

3L8Z4R602BA

for CHINAMFG Escape

5L3Z‐4R602‐WA

for CHINAMFG F-150

5L8Z4R602BA

for CHINAMFG Escape

6L34‐4K145‐WB

for CHINAMFG F-150

7L8Z4R602B

for CHINAMFG Escape

7L3Z‐4R602‐J

for CHINAMFG F-150

DV614K145AC

for CHINAMFG Escape

BL3V4602BD

for CHINAMFG F-150

5L834K145BA

for CHINAMFG Escape

BL3Z4R602H

for CHINAMFG F-150

8L8Z4R602C

for CHINAMFG Escape

DL3Z4R602B

for CHINAMFG F-150

CV6Z4R602B

for CHINAMFG Escape

DL3Z4R602Q

for CHINAMFG F-150

4641968AE

for CHINAMFG Escape

7L3Z4R602K

for CHINAMFG F-150

4641968AH

for CHINAMFG Escape

5L3Z4R602BB

for CHINAMFG F-150

26032944

for CHINAMFG Expedition

5L3Z4R602ZA

for CHINAMFG F-150

2657127

for CHINAMFG Expedition

AL344K145KA

for CHINAMFG F-150

AL3Z4A376D

for CHINAMFG Expedition

AL344K145KB

for CHINAMFG F-150

F77A4376BB

for CHINAMFG Explorer

AL3Z4R602KB

for CHINAMFG F-150

XL2Z4A376AA

for CHINAMFG Explorer

5C3Z4A376G

for CHINAMFG F250

ZZR571100

for CHINAMFG Explorer

5C3Z4A376EA

for CHINAMFG F250

F77A4376BB

for CHINAMFG EXPLORER

5C3Z4A376D

for CHINAMFG F-250

XL2Z‐4A376‐AA

for CHINAMFG EXPLORER

YC3Z4A376EA

for CHINAMFG F-250

ZZR0‐25‐100

for CHINAMFG EXPLORER

5C3Z4A376FA

for CHINAMFG F-250

7A2Z4R602N

for CHINAMFG Explorer

F81Z4A376HA

for CHINAMFG F-250

7A2Z4R602D

for CHINAMFG Explorer

F81Z4A376PA

for CHINAMFG F-250

7A2Z4R602G

for CHINAMFG Explorer

5C3Z4A376A

for CHINAMFG F-250

7A2Z4R602K

for CHINAMFG Explorer

BC3Z4A376A

for CHINAMFG F-250

BL3Z4R602D

for CHINAMFG F150

E5TZ4A376C

for CHINAMFG F-350

DL3Z4R602E

for CHINAMFG F150

E9TA4376DA

for CHINAMFG F-350

DL3Z4R602AL

for CHINAMFG F150

2C3Z4R602FB

for CHINAMFG F-350

DL3Z4R602T

for CHINAMFG F150

6F9Z4R602A

for CHINAMFG Five

8L3Z4R602B

for CHINAMFG F-150

5F9Z4R602AA

for CHINAMFG Five

8L3Z4R602E

for CHINAMFG F-150

6F924R602‐A

for CHINAMFG Five

8L3Z4R602F

for CHINAMFG F-150

5F934K145AE

for CHINAMFG Five

4L344K145TE

for CHINAMFG F-150

6F934K145AC

for CHINAMFG Five

5L344K145TA

for CHINAMFG F-150

7E5Z4R602A

for CHINAMFG Fusion

5L344K145TC

for CHINAMFG F-150

8E5Z4R602A

for CHINAMFG Fusion

5L344K145TD

for CHINAMFG F-150

AE5Z4R602A

for CHINAMFG Fusion

6L344K145HC

for CHINAMFG F-150

6R3Z4602B

for CHINAMFG Mustang

7L344K145TA

for CHINAMFG F-150

7R3Z4602A

for CHINAMFG Mustang

8L3Z4R602H

for CHINAMFG F-150

8G1Z4R602B

for CHINAMFG Taurus

52853317AC

for CHINAMFG F-150

8G1Z4R602A

for CHINAMFG Taurus

4L34‐4K145‐RE

for CHINAMFG F-150

2657195

for CHINAMFG Transit

4L34‐4K145‐RA

for CHINAMFG F-150

12479001

for CHINAMFG Transit

8L3Z‐4602‐D

for CHINAMFG F-150

5215710AB

for CHINAMFG Transit

8L3Z‐4R602‐D

for CHINAMFG F-150

5215710AE

for CHINAMFG Transit

5L34‐4K145‐RA

for CHINAMFG F-150

26571466

for CHINAMFG Transit

7L3Z 4R602‐J

for CHINAMFG F-150

CN4C154K145AD

for CHINAMFG Transit

4L34‐4K145‐WA

for CHINAMFG F-150

7C194K357HB

for CHINAMFG Transit

4L34‐4K145‐WC

for CHINAMFG F-150

7C19‐4K145‐DB

for CHINAMFG Transit

5L34‐4K145‐WB

for CHINAMFG F-150

CN4C154K357AD

for CHINAMFG Transit

5L34‐4K145‐WC

for CHINAMFG F-150

7C19‐4K145‐BB

for CHINAMFG Transit

7C19‐4K145‐BB

for CHINAMFG Transit

E9TZ4A376B

for FROD Bronco

E9TZ4A376B

for FROD Bronco

F6TZ4A376RA

for FROD Bronco

F6TZ4A376RA

for FROD Bronco

CN4C154K357AD

for CHINAMFG Transit

DORMAN NO.

938-301

936-807

936-896

946-448

938-091

936-808

938-801

936-810

936-846

936-973

936-805

936-809

936-285

938-076

936-942

936-811

936-891

946-831

936-800

936-812

936-892

936-801

946-830

936-288

976-698

938-066

936-802

938-305

938-031

946-821

936-803

936-325

938-082

938-802

936-806

936-327

936-847

938-304

938-063

936-813

936‐810

938-199

 

 

If you need more information about FORD Propeller Shaft, please message or email to us ASAP.

 

—-  OUR ADVANTAGE —-
 +700 models for AMERICA & EUROPE marketMOQ: 3PCS / for 1 item, MIN order amount: USD5000
Quality assurance: One Year WarrantyStable delivery time: 45 days
Free Sample DevelopedApply O/A 30-90 days for regular customer

 

Becides CHINAMFG Propeller Shaft,we have Over 700 items applicable for following vehicles:

 

 

 

 

 

 

 

 

—-   F A Q   —-
Q1:  If we don’t find what we need on your website, what should we do?
You can send us the OE number or of the product you need, we will check if we have them.
We also develop new models according to customer’s need;
you can contact us for more detail.
Q2:  Can I get a price discount if I order large quantities?Yes, it depends on your purchasing quantity, more quantity more discount.
Q3:  What about the delivery time?If we have stock, we can send you the goods within 3 working days,
if we don’t have stock, generally it needs 10 to 40 days.

Q4:  What’s our MOQ?Sample order for quality testing 1 piece , normal order 50 pieces for 1 order with mixed models .
Q5:  What’s your payment terms and condition ?We can accept T/T , LC, Trade Assurance, Western Union, Paypal, Moneygram ect.

 

 

After-sales Service: 1 Year
Condition: New
Color: Black
Certification: ISO, Ts16949
Type: Drive Shaft
Application Brand: Ford
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

How Do Rear Drive Shafts Ensure Efficient Power Transfer While Maintaining Balance?

Rear drive shafts play a crucial role in ensuring efficient power transfer from the engine or transmission to the rear wheels of a vehicle. At the same time, they must maintain balance to prevent vibrations, reduce stress on drivetrain components, and enhance overall performance. Here’s a detailed explanation of how rear drive shafts achieve efficient power transfer while maintaining balance:

1. Balanced Design:

Rear drive shafts are carefully designed and manufactured to achieve balance. Balance refers to the distribution of mass along the length of the drive shaft. Imbalances can lead to vibrations and unwanted forces that affect the smooth operation of the drivetrain. To achieve balance, drive shafts are dynamically balanced during the manufacturing process. This involves adding weights or removing material at specific locations to counteract any uneven distribution of mass. By achieving balance, the drive shaft can rotate smoothly at high speeds, minimizing vibrations and ensuring efficient power transfer.

2. Proper Length and Diameter:

The length and diameter of the rear drive shaft are important considerations for maintaining balance. A drive shaft that is too long or too short can result in excessive deflection or bending, leading to vibrations and potential failure. Similarly, an incorrect diameter can affect the stiffness and torsional strength of the drive shaft, resulting in imbalances. Manufacturers carefully calculate the optimal length and diameter of the drive shaft based on the vehicle’s specifications and requirements to ensure proper balance and power transfer.

3. High-Quality Materials:

The selection of high-quality materials is crucial for maintaining balance in rear drive shafts. Drive shafts are typically made from materials such as steel or aluminum. These materials offer the necessary strength and rigidity while being lightweight. The use of high-quality materials ensures that the drive shaft can withstand the torque and rotational forces without excessive flexing or bending, which can lead to imbalances. Additionally, the materials are chosen for their ability to resist fatigue and vibration, further contributing to balanced operation.

4. Precision Manufacturing:

Rear drive shafts are manufactured with precision to maintain balance. Advanced manufacturing techniques, such as computer-aided design (CAD) and computer numerical control (CNC) machining, are employed to ensure the drive shaft’s dimensional accuracy and balance. The manufacturing process involves precise machining of the shaft, including the yokes, flanges, and other components, to achieve tight tolerances and minimize any deviations that could affect balance. Strict quality control measures are implemented to verify the balance of each drive shaft before it is installed in a vehicle.

5. Vibration Dampening Techniques:

Rear drive shafts often incorporate vibration dampening techniques to further enhance balance and reduce unwanted vibrations. These techniques may include the use of balancing weights, dampers, or vibration-absorbing materials. Balancing weights can be strategically placed along the drive shaft to counteract any remaining imbalances. Dampers, such as rubber or elastomer components, are employed to absorb and dissipate vibrations, preventing them from propagating throughout the drivetrain. By minimizing vibrations, these techniques help maintain overall balance and contribute to efficient power transfer.

6. Universal Joints or Constant Velocity Joints:

Rear drive shafts incorporate flexible joints, such as universal joints (u-joints) or constant velocity (CV) joints, to accommodate changes in angles and maintain balance. These joints allow for angular movement and compensate for variations in the alignment between the transmission or transfer case and the rear differential. By allowing the drive shaft to flex and articulate, these joints help prevent binding, minimize stress on the drivetrain components, and maintain balance throughout the range of motion.

7. Regular Maintenance and Inspection:

Maintaining balance in rear drive shafts requires regular maintenance and inspection. Over time, components may wear or become damaged, leading to imbalances. It is important to periodically inspect the drive shaft for signs of wear, such as worn u-joints or damaged CV joints. Additionally, proper lubrication of the joints and ensuring the drive shaft is properly installed and aligned are essential for maintaining balance. Routine maintenance and inspections help detect and address any issues that could affect the drive shaft’s balance and overall performance.

In summary, rear drive shafts ensure efficient power transfer while maintaining balance through a combination of balanced design, proper length and diameter, high-quality materials, precision manufacturing, vibration dampening techniques, flexible joints, and regular maintenance. By achieving and maintaining balance, rear drive shafts contribute to smooth operation, minimize vibrations, and enhance the overall performance and longevity of the drivetrain system.

pto shaft

How Do Rear Drive Shafts Contribute to the Overall Performance of Rear-Wheel-Drive Vehicles?

Rear drive shafts play a crucial role in the overall performance of rear-wheel-drive (RWD) vehicles. They are responsible for transferring torque from the transmission or transfer case to the rear differential, which then distributes power to the rear wheels. Here’s a detailed explanation of how rear drive shafts contribute to the overall performance of RWD vehicles:

1. Power Transmission:

Rear drive shafts transmit power from the engine to the rear wheels, allowing for propulsion and forward motion. As the engine generates torque, it is transferred through the transmission or transfer case to the rear drive shaft. The drive shaft then transmits this torque to the rear differential, which further distributes the power to the rear wheels. The efficiency and effectiveness of this power transmission process directly impact the acceleration, speed, and overall performance of the vehicle.

2. Torque Delivery:

Rear drive shafts ensure efficient torque delivery to the rear wheels, enabling traction and propulsion. By connecting the transmission or transfer case to the rear differential, the drive shaft transfers torque generated by the engine to the wheels. The rear wheels receive this torque, allowing them to grip the road surface and propel the vehicle forward. The ability of the rear drive shaft to effectively deliver torque contributes to improved acceleration, responsiveness, and overall performance of RWD vehicles.

3. Weight Distribution:

Rear drive shafts contribute to the proper weight distribution in RWD vehicles. Since the engine is typically positioned at the front of the vehicle, the rear drive shaft helps balance the weight distribution by transferring power to the rear wheels. This balanced weight distribution enhances overall stability, handling, and cornering capabilities. It allows for better control of the vehicle and helps optimize the performance during various driving conditions.

4. Handling and Stability:

Rear drive shafts significantly influence the handling and stability of RWD vehicles. By delivering torque to the rear wheels, the drive shaft contributes to the vehicle’s rear-wheel traction. This configuration provides better weight transfer during acceleration, which improves traction and reduces the chances of wheel spin. The rear drive shaft also aids in maintaining stability during cornering by helping to distribute the vehicle’s weight more evenly. RWD vehicles are known for their balanced and predictable handling characteristics, and the rear drive shaft plays a vital role in achieving these attributes.

5. Performance in Various Conditions:

Rear drive shafts impact the performance of RWD vehicles in different driving conditions. In dry or high-grip situations, the rear-wheel traction provided by the drive shaft enables quick acceleration and efficient power delivery. RWD vehicles often exhibit superior handling characteristics in these conditions due to the balanced weight distribution and the rear drive shaft’s ability to transfer torque effectively. However, in low-traction conditions such as rain, snow, or off-road situations, RWD vehicles may require additional driver skill and careful throttle control to maintain traction and stability.

6. Customization and Performance Upgrades:

Rear drive shafts can be customized or upgraded to enhance the performance of RWD vehicles. For example, performance-oriented drive shafts made from lighter materials like aluminum or carbon fiber can reduce rotational mass, improving overall vehicle agility and responsiveness. Upgraded drive shafts with strengthened components can handle increased torque and power outputs in high-performance applications. Customization and upgrades to the rear drive shaft allow vehicle owners to tailor the performance characteristics to their specific needs and preferences.

7. Maintenance and Service:

Regular maintenance and service of rear drive shafts are essential for maintaining optimal performance. Periodic inspections, lubrication, and addressing any issues such as worn U-joints or CV joints can prevent driveline vibrations, reduce power losses, and ensure smooth torque transmission. Proper maintenance contributes to the longevity and reliability of the rear drive shaft, allowing it to continue supporting the overall performance of the RWD vehicle.

In summary, rear drive shafts are integral to the overall performance of RWD vehicles. They facilitate power transmission, torque delivery, and weight distribution, contributing to acceleration, traction, handling, and stability. The rear drive shaft’s ability to efficiently transfer torque to the rear wheels is key to the performance characteristics of RWD vehicles. Through customization, upgrades, and regular maintenance, rear drive shafts can be optimized to further enhance the performance of RWD vehicles in various driving conditions and applications.

pto shaft

Can You Explain the Role of a Rear Drive Shaft in Power Distribution to the Wheels?

A rear drive shaft plays a crucial role in power distribution to the wheels of a vehicle. It is responsible for transmitting torque from the engine or transmission to the rear wheels, enabling propulsion and controlling the distribution of power. Here’s a detailed explanation of the role of a rear drive shaft in power distribution to the wheels:

1. Torque Transmission:

One of the primary functions of a rear drive shaft is to transmit torque from the engine or transmission to the rear wheels of a vehicle. Torque is the rotational force generated by the engine, and it is essential for powering the wheels and enabling vehicle movement.

As the engine or transmission produces torque, it is transferred through the drivetrain system, which includes the rear drive shaft. The rear drive shaft serves as a mechanical link, transmitting the torque from the engine or transmission to the rear differential.

2. Rear Differential:

The rear differential is a component that sits between the rear drive shaft and the rear wheels. Its primary function is to distribute torque received from the rear drive shaft to the individual rear wheels.

When torque is transmitted through the rear drive shaft, it reaches the rear differential. The rear differential then splits the torque into two outputs, one for each rear wheel. This distribution of torque allows the wheels to rotate at different speeds when turning, ensuring smooth and controlled vehicle maneuverability.

3. Power Distribution:

A rear drive shaft plays a critical role in power distribution between the rear wheels. By transmitting torque to the rear differential, it enables the differential to distribute power to each wheel based on traction conditions and driving demands.

When a vehicle is in motion, the rear wheels may encounter different road conditions or have varying levels of traction. The rear differential, controlled by the rear drive shaft, ensures that power is distributed to the wheels with better traction, enhancing overall vehicle stability and control.

4. Drive System Configuration:

The presence of a rear drive shaft is often associated with specific drive system configurations in vehicles. Rear-wheel drive (RWD) vehicles typically employ a rear drive shaft to transfer power from the engine or transmission to the rear wheels.

In RWD vehicles, the rear drive shaft is an integral part of the drivetrain system. It allows the engine’s power to be directed to the rear wheels, providing the necessary propulsion for the vehicle to move forward or backward.

5. Four-Wheel Drive Capability:

In vehicles equipped with four-wheel drive (4WD) or all-wheel drive (AWD) systems, the rear drive shaft also plays a role in power distribution to all four wheels. In these systems, the rear drive shaft transfers torque to the transfer case, which distributes power to both the front and rear differentials.

The transfer case receives torque from the rear drive shaft and splits it between the front and rear axles, allowing power to be distributed to all four wheels. This enables enhanced traction, off-road capability, and improved vehicle performance in various driving conditions.

In summary, the rear drive shaft is a critical component in power distribution to the wheels of a vehicle. It transmits torque from the engine or transmission to the rear differential, which distributes power to the rear wheels. The rear drive shaft enables power distribution between the wheels, ensures stability and control, and is integral to specific drive system configurations, such as rear-wheel drive and four-wheel drive. Its role is essential in enabling vehicle propulsion and optimizing power distribution for various driving conditions.

China supplier Bl8z4r602A Rear Drive Propeller Shaft for CZPT Escape OEM 936-892 2008-2012 Driveshaft  China supplier Bl8z4r602A Rear Drive Propeller Shaft for CZPT Escape OEM 936-892 2008-2012 Driveshaft
editor by CX 2023-11-07