China supplier 5c3z4a376fa for CZPT Excursion 01-03 Hot Sale Rear Prop Shaft Driveshaft Transmission Propeller Drive Shaft

Product Description

As a professional manufacturer for propeller shaft, we have +800 items for all kinds of car, main suitable
for AMERICA & EUROPE market.

 

Our advantage:

 

1. Full range of products

2. MOQ qty: 5pcs/items

3. Delivery on time

4: Warranty: 1 YEAR

5. Develope new items: FREE

OEM NO. 5C3Z4A376FA F81Z4A376HA F81Z4A376PA 5C3Z4A376A 5C3Z4A376F 65-9300
Application for FORD EXCURSION 01-03
Material SS430/45# steel 
Balancing Standrad G16, 3200rpm
Warranty One Year

For some items, we have stock, small order (+3000USD) is welcome.

 

The following items are some of propeller shafts, If you need more information, pls contact us for ASAP.
 

for CHINAMFG PROPELLER SHAFT

OEM

Application

OEM

Application
65-9165 for FORD 8L3Z4R602E for CHINAMFG F-150 04-08
65-9176 for FORD 8L3Z4R602F for CHINAMFG F-150 04-08
65-9173 for FORD 936-808 for CHINAMFG F-150 04-08
65-9183 for FORD 936-800 for CHINAMFG F-150 04-09
65-9186 for FORD 936-807 for CHINAMFG F-150 06-08
65-9191 for CHINAMFG CHINAMFG 1979 8L3Z4R602H for CHINAMFG F-150 06-08
65-9192 for CHINAMFG CHINAMFG 1980 7L3Z4R602K for CHINAMFG F-150 06-08
65-9152 for CHINAMFG CHINAMFG 66-70 936-809 for CHINAMFG F-150 10-11
65-9153 for CHINAMFG CHINAMFG 66-77 BL3Z4R602D for CHINAMFG F150 11-12
65-9170 for CHINAMFG CHINAMFG 78 BL3V4602BD for CHINAMFG F-150 11-14
65-9174 for CHINAMFG CHINAMFG 78 946-831 for CHINAMFG F-150 11-14
65-9164 for CHINAMFG CHINAMFG 79 65-9158 for CHINAMFG F-150 79
65-9166 for CHINAMFG CHINAMFG 79 65-9193 for CHINAMFG F-150 80-81
65-9161 for CHINAMFG CHINAMFG 79 65-9453 for CHINAMFG F-150 97-98
65-9162 for CHINAMFG CHINAMFG 79 65-9545 for CHINAMFG F-150 99-03
65-9160 for CHINAMFG CHINAMFG 80-82 65-9187 for CHINAMFG F-250 1979
65-9832 for CHINAMFG CHINAMFG 83-84 65-9148 for CHINAMFG F-250 77-79
65-9440 for CHINAMFG CHINAMFG 83-87 65-9305 for CHINAMFG F-250 99-01
65-9430 for CHINAMFG CHINAMFG 85-86 FD1089 for CHINAMFG F-250 Super Duty 11-16
65-9431 for CHINAMFG CHINAMFG 85-89 65-9112 for CHINAMFG F-250 Super Duty 99-02
65-9416 for CHINAMFG CHINAMFG 87-89 65-9115 for CHINAMFG F-250 Super Duty 99-02
65-9400 for CHINAMFG CHINAMFG 87-89 65-9110 for CHINAMFG F-250 Super Duty 99-02
65-9442 for CHINAMFG CHINAMFG 88-90 65-9116 for CHINAMFG F-250 Super Duty 99-02
65-9441 for CHINAMFG CHINAMFG 88-93 5C3Z4A376G for CHINAMFG F250 Super Duty 99-04
65-9443 for CHINAMFG CHINAMFG 88-96 65-9303 for CHINAMFG F-250 Super Duty 99-06
65-9664 for CHINAMFG CHINAMFG 90-93 65-9300 for CHINAMFG F-250 Super Duty 99-10
65-9665 for CHINAMFG CHINAMFG 90-94 65-9721 for CHINAMFG F-350 85-94
65-9663 for CHINAMFG CHINAMFG 90-96 65-9739 for CHINAMFG F-350 89-94
65-9660 for CHINAMFG CHINAMFG 90-96 946-448 for CHINAMFG F-350 89-94
65-9444 for CHINAMFG CHINAMFG 90-96 65-9447 for CHINAMFG F-350 95-96
65-9825 for CHINAMFG CHINAMFG II 1986-1990 F81Z4R602FL for CHINAMFG F-350 SUPER DUTY 99-01
65-9821 for CHINAMFG CHINAMFG II 84-90 65-9114 for CHINAMFG F-350 Super Duty 99-02
65-9822 for CHINAMFG CHINAMFG II 84-90 5F9Z4R602AA for CHINAMFG Five Hundred 05-07
65-9823 for CHINAMFG CHINAMFG II 89-90 FD1035 for CHINAMFG Five Hundred 05-07
F2G34K145CC for CHINAMFG Edge 7E5Z4R602A for CHINAMFG CHINAMFG 08-12
7T434K357AC for CHINAMFG Edge 07-08 936-812 for CHINAMFG Mustang 05-08
DT4Z4R602A for CHINAMFG Edge 07-13 65-9830 for CHINAMFG Ranger 83-85
DV614K145AC for CHINAMFG Escape 65-9831 for CHINAMFG Ranger 83-85
65-9463 for CHINAMFG Escape 01-05 65-9423 for CHINAMFG Ranger 85-88
7L8Z4R602B for CHINAMFG Escape 01-07 65-9636 for CHINAMFG Ranger 88
936-892 for CHINAMFG Escape 08-12 65-9638 for CHINAMFG Ranger 88-89
8L8Z4R602C for CHINAMFG Escape 08-12 65-9661 for CHINAMFG Ranger 90-97
CV6Z4R602B for CHINAMFG Escape 13-16 65-9675 for CHINAMFG Ranger 95-97
5L834K145BA for CHINAMFG Escape 13-17 65-2003 for CHINAMFG Taurus 08-15
65-9304 for CHINAMFG Excursion 00-03 CN4C154K145AD for CHINAMFG Transit
65-9302 for CHINAMFG Excursion 01-05 7C194K145BB for CHINAMFG Transit 
65-9546 for CHINAMFG Excursion 01-05 7C194K357HB for CHINAMFG Transit 00-06
65-2001 for CHINAMFG Expedition 06-14 CN4C154K357AD for CHINAMFG Transit 06-14
AL3Z4A376D for CHINAMFG Expedition 07-14 7C194K145DB for CHINAMFG Transit 15-16
65-9543 for CHINAMFG Expedition 97-02 65-9667 for CHINAMFG Trucks – F-350 Pickup 89-94
1L2Z4A376AA for CHINAMFG Explorer 02-10 F6TZ4A376RA FROD CHINAMFG 90-96
65-9622 for CHINAMFG EXPLORER 1996 65-9672 for CHINAMFG F-100 96-97
65-9624 for CHINAMFG Explorer 95-96 936-805 for CHINAMFG F-150 04
65-9293 for CHINAMFG Explorer 97-01 65-9544 for CHINAMFG F-150 04
65-9450 for CHINAMFG Explorer 98 936-802 for CHINAMFG F-150 04-08
F77A4376BB for CHINAMFG Explorer Sport 02-03 7A2Z4R602N for CHINAMFG Explorer Sport Trac 07-10

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Condition: New
Color: Black
Certification: ISO, IATF
Type: Propeller Shaft/Drive Shaft
Application Brand: Ford
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pto shaft

What Maintenance Practices Are Essential for Prolonging the Lifespan of Rear Drive Shafts?

Maintaining rear drive shafts is essential for ensuring their longevity and optimal performance. By following proper maintenance practices, you can prolong the lifespan of rear drive shafts and prevent premature failures. Here are the key maintenance practices that are essential for maximizing the lifespan of rear drive shafts:

1. Regular Inspection:

Performing regular inspections is crucial for identifying any early signs of wear, damage, or misalignment in the rear drive shaft. Inspect the drive shaft for any visible cracks, dents, or corrosion. Pay attention to the condition of the universal joints (u-joints) or constant velocity (CV) joints, as they are prone to wear. Look for excessive play or looseness in the joints, and check for leaks or torn boots that could allow dirt and moisture to enter. Regular inspections help catch potential issues before they escalate and cause significant damage to the drive shaft.

2. Lubrication:

Proper lubrication of the drive shaft’s u-joints or CV joints is critical for reducing friction, preventing wear, and maintaining smooth operation. Consult the manufacturer’s guidelines to determine the recommended lubricant and interval for greasing the joints. Use high-quality lubricants that are compatible with the specific joint type and follow the correct greasing procedure. Insufficient lubrication can lead to accelerated wear and premature failure of the drive shaft. Regularly inspect the joints’ condition during the greasing process to ensure they are adequately lubricated and in good working order.

3. Balancing and Alignment:

Keep the rear drive shaft properly balanced and aligned to prevent vibrations and excessive stress on the drivetrain components. If you notice vibrations, especially at higher speeds, have the drive shaft’s balance checked by a professional. Imbalances can occur due to the accumulation of dirt or debris, damaged balancing weights, or wear on the drive shaft. Similarly, if you experience driveline vibrations or notice uneven tire wear, it may indicate misalignment. Have the drive shaft alignment checked and adjusted as necessary. Proper balancing and alignment contribute to a smoother and more reliable operation, minimizing wear on the drive shaft.

4. Protection from Moisture and Contaminants:

Rear drive shafts are susceptible to moisture, dirt, and other contaminants that can lead to corrosion, accelerated wear, and joint failure. Avoid driving through deep water or muddy conditions that can submerge or coat the drive shaft with corrosive substances. If the drive shaft becomes wet or dirty, clean it promptly using a gentle stream of water and mild soap, and ensure it is thoroughly dried. Applying a protective coating or lubricant to exposed surfaces can help prevent corrosion. Additionally, inspect and replace damaged or torn joint boots to prevent dirt and moisture from entering and causing damage.

5. Proper Torque and Fastener Inspection:

Ensure that all fasteners, such as bolts and nuts, are tightened to the manufacturer’s specified torque values. Loose or improperly tightened fasteners can lead to vibrations, misalignment, and damage to the drive shaft. Regularly inspect the fasteners for any signs of loosening or damage and tighten them as necessary. During maintenance or repairs that involve removing the drive shaft, ensure that the fasteners are properly reinstalled and torqued to the recommended specifications. Following the correct torque values and fastener inspection practices helps maintain the integrity and safety of the rear drive shaft.

6. Professional Maintenance and Repairs:

While some maintenance tasks can be performed by vehicle owners, certain maintenance and repair procedures are best left to professionals with specialized knowledge and equipment. If you encounter significant issues, such as severe wear, damaged joints, or suspected balance or alignment problems, it is advisable to consult a qualified mechanic or drivetrain specialist. They can conduct thorough inspections, provide accurate diagnoses, and perform the necessary repairs or replacements to ensure the rear drive shaft’s longevity and proper functioning.

7. Follow Manufacturer Guidelines:

Always refer to the vehicle manufacturer’s guidelines and recommendations for maintenance practices specific to your vehicle’s rear drive shaft. Manufacturers provide valuable information regarding maintenance intervals, lubrication requirements, inspection procedures, and other important considerations. Adhering to these guidelines ensures that you follow the best practices and requirements specified for your particular drive shaft model, contributing to its prolonged lifespan.

In summary, regular inspection, proper lubrication, balancing and alignment, protection from moisture and contaminants, proper torque and fastener inspection, professional maintenance and repairs when necessary, and following manufacturer guidelines are essential maintenance practices for prolonging the lifespan of rear drive shafts. By implementing these practices, you can enhance the reliability, durability, and performanceof the rear drive shaft, ultimately extending its lifespan and reducing the risk of unexpected failures or costly repairs.

pto shaft

What Safety Precautions Should Be Followed When Working with Rear Drive Shafts?

Working with rear drive shafts requires adherence to specific safety precautions to minimize the risk of accidents, injuries, and damage to the vehicle or surrounding components. Here are detailed safety precautions that should be followed when working with rear drive shafts:

1. Wear Protective Gear:

Always wear appropriate personal protective equipment (PPE) when working with rear drive shafts. This includes safety glasses or goggles to protect your eyes from debris, gloves to safeguard your hands from sharp edges or moving parts, and sturdy footwear to provide foot protection in case of accidents or dropped tools.

2. Ensure Vehicle Stability:

Prioritize vehicle stability when working with rear drive shafts. Park the vehicle on a level surface and engage the parking brake. If necessary, use wheel chocks to prevent the vehicle from rolling. Additionally, if you are raising the vehicle using a jack or lift, ensure that it is securely supported with jack stands or appropriate lift points to prevent accidental movement or collapse.

3. Disconnect the Battery:

Before beginning any work on the rear drive shaft, disconnect the vehicle’s battery. This precaution helps prevent accidental engagement of the starter motor or other electrical components, reducing the risk of injury or damage during the maintenance or replacement process.

4. Release Tension on the Drivetrain:

Release tension on the drivetrain components before removing the rear drive shaft. If applicable, release tension on the parking brake, shift the transmission into neutral, and engage the wheel chocks. This step helps prevent unexpected movement of the vehicle or drivetrain components while working on the drive shaft.

5. Secure the Drive Shaft:

Prior to removing the rear drive shaft, ensure it is securely supported and immobilized. Use a drive shaft support fixture or a transmission jack to hold the drive shaft in place. This prevents the drive shaft from falling or causing injury when it is disconnected from the transmission or differential.

6. Mark Alignment Points:

Before disconnecting the rear drive shaft, mark alignment points on the drive shaft and the surrounding components. This will help ensure proper reinstallation and alignment during assembly. Marking the orientation of the drive shaft also aids in identifying any imbalance or misalignment issues that may arise during reinstallation.

7. Use Proper Tools and Techniques:

Always use the appropriate tools and techniques when working with rear drive shafts. Use socket wrenches, torque wrenches, and other specialized tools designed for drive shaft removal and installation. Avoid using improper tools or excessive force, as this can lead to damage or personal injury. Follow manufacturer guidelines and service manuals for specific procedures and torque specifications.

8. Handle with Care:

Handle the rear drive shaft with care to avoid unnecessary damage or injury. Avoid dropping or striking the drive shaft against hard surfaces, as this can cause dents, bends, or other structural damage. Additionally, be cautious of sharp edges or splines on the drive shaft that can cause cuts or abrasions. Always handle the drive shaft by gripping secure areas and wearing appropriate gloves for added protection.

9. Inspect for Damage and Wear:

Before reinstalling or replacing the rear drive shaft, thoroughly inspect it for any signs of damage or wear. Check for cracks, dents, corrosion, or loose components. Also, inspect the U-joints or CV joints for excessive play, rust, or damaged seals. If any issues are detected, it is advisable to replace the damaged parts or the entire drive shaft to ensure safe and reliable operation.

10. Follow Proper Reinstallation Procedures:

When reinstalling the rear drive shaft, follow proper procedures to ensure correct alignment and engagement with the transmission output shaft and differential input flange. Use the alignment marks made during disassembly as a guide. Tighten all fasteners to the recommended torque specifications, and ensure that all retaining clips or bolts are properly secured.

11. Test for Proper Functioning:

After completing the rear drive shaft work, conduct a thorough test to ensure proper functioning. Check for any abnormal vibrations, noises, or leaks during vehicle operation. If any issues are observed, reinspect the drive shaft installation and address the problem promptly.

12. Consult Professional Assistance if Needed:

If you are uncertain about any aspect of working with rear drive shafts or encounter difficulties during the process, it is advisable to seek professional assistance from a qualified technician or automotive service center. Theycan provide the necessary expertise and ensure the work is carried out safely and correctly.

By following these safety precautions when working with rear drive shafts, you can help protect yourself, prevent damage to the vehicle, and maintain a safe working environment. Remember to always prioritize safety and exercise caution throughout the entire process.

pto shaft

How Do Rear Drive Shafts Handle Variations in Torque, Speed, and Alignment?

Rear drive shafts are designed to handle variations in torque, speed, and alignment within a vehicle’s drivetrain. They play a crucial role in transmitting power from the engine or transmission to the rear wheels while accommodating the dynamic forces and movements encountered during operation. Here’s a detailed explanation of how rear drive shafts handle variations in torque, speed, and alignment:

Variations in Torque:

Rear drive shafts are engineered to withstand and transmit varying levels of torque generated by the engine. Torque variations occur during acceleration, deceleration, and changes in load. To handle these variations, rear drive shafts are typically constructed with high-strength materials such as steel or aluminum to provide the necessary strength and rigidity. The diameter, wall thickness, and design of the drive shaft are carefully calculated to ensure torque capacity and reliability. Additionally, universal joints (u-joints) or constant velocity (CV) joints are incorporated into the drive shaft assembly to allow for rotational movement and accommodate changes in angles and torque loads.

Variations in Speed:

Rear drive shafts are designed to adapt to variations in rotational speed between the engine or transmission and the rear wheels. As the vehicle accelerates or decelerates, the rotational speed of the drive shaft changes. To handle these variations, the length and design of the rear drive shaft are carefully calculated to minimize vibrations and maintain smooth power delivery. The drive shaft may incorporate features such as balancing weights or dampers to reduce or eliminate vibrations caused by speed fluctuations. Additionally, the use of u-joints or CV joints allows for angular movement and accommodates speed differentials between the two ends of the drive shaft.

Variations in Alignment:

Rear drive shafts must also accommodate variations in alignment caused by suspension movement, chassis flex, and drivetrain articulation. As the suspension compresses or extends, the drivetrain components can shift in relation to each other, causing changes in the alignment of the rear drive shaft. To handle these variations, rear drive shafts incorporate flexible components such as u-joints or CV joints. These joints allow for angular movement and articulation, accommodating changes in the relative positions of the transmission, differential, and rear wheels. The use of flexible couplings or slip yokes at each end of the drive shaft also helps to compensate for alignment changes and prevent binding or excessive stress on the drive shaft components.

Vibration and Harmonic Damping:

Vibrations and harmonic forces can be generated within the drivetrain, especially at higher speeds. Rear drive shafts are designed to mitigate these vibrations and dampen harmonic forces to ensure a smooth and balanced ride. Various techniques are employed to achieve this, including the use of properly balanced drive shafts, vibration-absorbing materials, and damping devices such as rubber or elastomer dampers. These measures help reduce the transmission of vibrations and harmonics throughout the drivetrain, enhancing the overall comfort, stability, and longevity of the rear drive shaft.

In summary, rear drive shafts are engineered to handle variations in torque, speed, and alignment within a vehicle’s drivetrain. They are constructed with high-strength materials, incorporate flexible joints, and employ techniques to dampen vibrations and harmonics. By accommodating these variations, rear drive shafts ensure efficient power transmission, smooth operation, and reliable performance in various driving conditions.

China supplier 5c3z4a376fa for CZPT Excursion 01-03 Hot Sale Rear Prop Shaft Driveshaft Transmission Propeller Drive Shaft  China supplier 5c3z4a376fa for CZPT Excursion 01-03 Hot Sale Rear Prop Shaft Driveshaft Transmission Propeller Drive Shaft
editor by CX 2024-02-01